A Meir-keeler Type Common Fixed Point Theorem for Four Mappings
نویسنده
چکیده
In this paper, we prove a general common fixed point theorem for two pairs of weakly compatible self-mappings of a metric space satisfying a weak Meir-Keeler type contractive condition by using a class of implicit relations. In particular, our result generalizes and improves a result of K. Jha, R.P. Pant, S.L. Singh, by removing the assumption of continuity, relaxing compatibility to weakly compatibility property and replacing the completeness of the space with a set of four alternative conditions for maps satisfying an implicit relation. Also, our result improves the main result of H. Bouhadjera, A. Djoudi.
منابع مشابه
Meir-Keeler Type Contraction Mappings in $c_0$-triangular Fuzzy Metric Spaces
Proving fixed point theorem in a fuzzy metric space is not possible for Meir-Keeler contractive mapping. For this, we introduce the notion of $c_0$-triangular fuzzy metric space. This new space allows us to prove some fixed point theorems for Meir-Keeler contractive mapping. As some pattern we introduce the class of $alphaDelta$-Meir-Keeler contractive and we establish some results of fixed ...
متن کاملSimultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications
In this paper, we first establish a new fixed point theorem for a Meir-Keeler type condition. As an application, we derive a simultaneous generalization of Banach contraction principle, Kannan's fixed point theorem, Chatterjea's fixed point theorem and other fixed point theorems. Some new fixed point theorems are also obtained.
متن کاملCOMON FIXED POINT THEOREMS FOR GENERALIZED WEAKLY CONTRACTIVE MAPPINGS UNDER THE WEAKER MEIR-KEELER TYPE FUNCTION
n this paper, we prove some common fixed point theorems for multivalued mappings and we present some new generalization contractive conditions under the condition of weak compatibility. Our results extends Chang-Chen’s results as well as ´Ciri´c results. An example is given to support the usability of our results.
متن کاملRandom fixed point of Meir-Keeler contraction mappings and its application
In this paper we introduce a generalization of Meir-Keeler contraction forrandom mapping T : Ω×C → C, where C be a nonempty subset of a Banachspace X and (Ω,Σ) be a measurable space with being a sigma-algebra of sub-sets of. Also, we apply such type of random fixed point results to prove theexistence and unicity of a solution for an special random integral equation.
متن کاملFixed points of generalized $alpha$-Meir-Keeler type contractions and Meir-Keeler contractions through rational expression in $b$-metric-like spaces
In this paper, we first introduce some types of generalized $alpha$-Meir-Keeler contractions in $b$-metric-like spaces and then we establish some fixed point results for these types of contractions. Also, we present a new fixed point theorem for a Meir-Keeler contraction through rational expression. Finally, we give some examples to illustrate the usability of the obtained results.
متن کاملSuzuki-type fixed point theorems for generalized contractive mappings that characterize metric completeness
Inspired by the work of Suzuki in [T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), 1861--1869], we prove a fixed point theorem for contractive mappings that generalizes a theorem of Geraghty in [M.A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604--608]an...
متن کامل